
Model-Driven Reengineering Legacy Software Systems to Web Services

ABSTRACT

The advancement of internet technology enables legacy software systems to be reused

across geographical boundaries. Web Services (WS) have emerged as a new component-based

software development paradigm in a network-centric environment based on the Service Oriented

Architecture (SOA), the open standard description language XML and transportation protocol

HTML. Therefore, legacy software systems can incorporate WS technology in order to be reused

and integrated in a distributed environment across heterogeneous platforms. In this paper, we

present a comprehensive, systematic, automatable approach toward reengineering legacy

software systems to WS applications, rather than rewriting the whole legacy software system

from scratch in an ad-hoc manner.

Keywords: software system reengineering; Web Services; Model-Integrated Computing; meta-

model; model; model marshaling and unmarshaling; Entity-Relationship model

INTRODUCTION

Web Services as a Presentation Layer for Legacy Software Reuse and Integration

 With the rapid advancement of software technology, more and more software systems

developed with the state-of-the-art technologies of yesterday are becoming legacy software

systems of today. Specifically, we define legacy software in a comparative manner, i.e., the

software systems are legacy if the languages, models or platforms they are developed with can be

replaced with new languages, models or platforms of advanced features and improved

capabilities. The reuse and integration of legacy software systems offer a promising direction for

boosting productivity by dramatically reducing both cost and time-to-market expenses (Devanbu

et al., 1996). With the emergence and advancement of Internet technology, the power of legacy

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2005 2. REPORT TYPE

3. DATES COVERED
 00-00-2005 to 00-00-2005

4. TITLE AND SUBTITLE
Model-Driven Reengineering Legacy Software Systems to Web Services

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Indiana University/Purdue University,Department of Computer and
Information Sciences,Indianapolis,IN,46202

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The advancement of internet technology enables legacy software systems to be reused across geographical
boundaries. Web Services (WS) have emerged as a new component-based software development paradigm
in a network-centric environment based on the Service Oriented Architecture (SOA), the open standard
description language XML and transportation protocol HTML. Therefore, legacy software systems can
incorporate WS technology in order to be reused and integrated in a distributed environment across
heterogeneous platforms. In this paper, we present a comprehensive, systematic, automatable approach
toward reengineering legacy software systems to WS applications, rather than rewriting the whole legacy
software system from scratch in an ad-hoc manner.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

24

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

software systems is being unleashed toward a broader scope. Particularly, Web Services (WS)

have emerged as a new component-based software development paradigm in a network-centric

environment based on the Service Oriented Architecture (SOA) (Colan, 2004) as is illustrated in

Figure 1. By using standard XML as the description language and HTTP as the transport

protocol, WS can be used to wrap legacy software systems for integration beyond the enterprise

boundary across heterogeneous platforms. To be specific, WS uses the XML based XML-based

Web Services Description Language (WSDL) for specifying services, SOAP (Simple Object

Access Protocol) messages for service invocation, and UDDI (Universal Description, Discovery

and Integration) registry for service discovery (Colan, 2004). With the wrapping by WS, the

integration of legacy software systems is simplified, from one to one interoperation to

interoperate on the one common ground (WS).

Service Registration
(UDDI)

Service Requestor Service Provider

Find Publish

Bind
(SOAP)

Figure 1. Service Oriented Architecture (SOA)

Approaches for Using Web Services as a Wrapper

 There are several options for reengineering legacy software to WS:

 Manually port original software source code to WS applications. This is an expensive

solution. Also WS code, such as WSDL, is verbose, and coding WSDL manually is error

prone.

 Language tool based—in which the legacy software package is recompiled to generate

WSDL. Many tools such as AXISi, and the Microsoft .Net framework provide the

function of generating WSDL from implementation code (such as Java and C#) and vice

versa. Such tools leverage compiler technology to generate WSDL from other

programming languages. The WSDL in turn can be used to generate client side stub code

for the client to call the services exposed by legacy software systems (Graham, 2002).

However, this language tool based solution remains to be language-dependent. With the

variety of legacy software systems, a language neutral solution is required in order to

sufficiently handle the reengineering of legacy software systems to WS.

 Cao, et al. (2004) used a model-driven approach to WS development. We build upon this

work by presenting a model-driven approach for reengineering legacy software systems to the

WS applications, in which a model plays a central role for migrating legacy software systems to

WS implementations. A model is usually represented in UMLii, or any other abundant domain

specific visual language (as can be seen in JVLCiii), which represents the structural and contextual

information of a legacy software system in a language neutral style without being tied to

implementation specifics. The model-driven reengineering approach is also based on the

observation that legacy software systems are usually documented in a visual modeling language;

models can also be used as first-class assets in SOA (e.g., model as the basis for service discovery

in Hausmann, et al., 2004).

 To apply the model-driven approach for reengineering legacy software systems to WS, a

model should play a role beyond the conventional design and documentation capacity, i.e., a role

for WS code generation directly to resolve the manual porting problem as described above.

Usually UML-based code generation is based on a static mapping from the UML profile (Frankel,

2003), which lacks flexibility during code generation process. As such, we use Model

IntegratedComputing (MIC) (Lédeczi et al., 2001) for building a WS modeling environment and

consequently for WS code generation. MIC is essentially a development paradigm that offers a

means for creating a modeling language (meta-model), its associated modeling language

interpreter (generator). Then any domain-specific model built based on the modeling language

can be interpreted by traversing the model tree. The result of the interpretation process is the code

synthesized from the model. MIC has been widely used in middleware (Gokhale et al., 2004;

Edwards et al., 2004) and embedded systems (Karsai et al., 2003; Lédeczi et al., 2003).

Table 1. Comparison between MIC and programming language
MIC Programming Language

meta-model grammar

generator compiler/interpreter

domain-specific model
application developed using the corresponding

language

code synthesized in any chosen language intermediate code or native code

 To ease the understanding of MIC, Table 1 provides an analog between MIC and

conventional programming language elements. Figure 2 provides an example of a meta-model of

Finite State Machine (FSM) and the corresponding model based on it.

 While the meta-model (and in the later part the domain-specific modeling environment)

described in this paper is based on the notation of the Generic Modeling Environment (GME)

(ISIS, 2001) (as it is the only tool for the MIC paradigm so far), the same principle as shown in

this paper can be applied to other MIC-compliant modeling tools as well.

State1

State2

l

 Whi

software t

process. P

complexit

and error

language)

model), i

automatab

modeling

which ne

constructi
Finite State Machine (FSM) Meta-model
Problems for Applying Model Integrated Comp

to Reengineering Legacy Software to W

le MIC offers an automatable and language neutral appr

o WS, the starting point of MIC - the construction of the m

revious work on WS modeling (Cao et al., 2003) has rev

y of the modeling target, the construction of the meta-mo

-prone. With the modeling assets (UML or other dom

 already abundantly available as part of the legacy sof

t is desirable to derive the meta-model from the leg

le process as opposed to being ad-hoc and error-prone

languages lack adequate modularity support for large s

vertheless is widely existing in general programming

on of a meta-model remains an art rather than a science.
 Finite State Machine Model
Figure 2. A simple example of meta-model and mode
uting (MIC)

S

oach for reengineering legacy

eta-model has to be a manual

ealed that with the increasing

del is subject to being ad-hoc

ain specific visual modeling

tware (which we term legacy

acy model in a systematic,

. However, the current meta-

cale meta-model construction,

 languages. As a result, the

 Therefore, this paper is composed of two major parts, each corresponding to the primary

contributions of this paper:

1) the elicitation of a meta-model from a legacy model in a systematic, automatable process,

which is addressed in Section 2 and Section 3, and consequently

2) the creation of a domain-specific WS modeling environment for WS code generation in

Section 4, as well as the treatment of WS semantic concerns from a model-driven

perspective in Section 5.

Related work is described in Section 6, followed by the conclusion and future work in Section 7.

MARSHALING AND UNMARSHALING MODELS USING THE ENTITY-

RELATIONSHIP (ER) MODEL

 The elicitation of a meta-model from UML or other domain-specific modeling notations can

be done on a per source model basis. However, with the constant emergence of new modeling

notations, the elicitation approaches will become ad-hoc and not reusable. Moreover, there is a

need to converge the diversified modeling assets for modeling tool integrationiv. Therefore, we

need to encode the diversified models with a common representation, such that different

modeling notations can transfer to and from it, thus modeling assets can be exchanged and used

across different modeling tools. Cao et al. (2005) have referred to these modeling notation

transferals as marshaling and unmarshaling, respectively. The term marshaling comes from the

distributed computing scenario where heterogeneous data types are always translated into some

common data type over the network so as to be consumed at another end of the distributed

environment, where the common data type is unmarshaled again into another environment-

specific data type. Comparatively, the concept of marshaling and unmarshaling models refers to

transform a model to an intermediate common semantic form, which is reinterpreted in another

modeling environment/tool. This intermediate common semantic form is in a similar vein to

ACME (Garlan et al., 2000), which is an intermediate form for exchanging software architecture

description languages across different software architecture design tools. Moreover, with the

heterogeneity of models at different meta-level (not only model level but also meta-model level)

(Frankel, 2003), marshaling and unmarshaling of models can be performed at different levels:

horizontally, meta-model level and model-level; vertically, meta-model to/from model as is

illustrated in Figure 3.

Figure 3. Marshaling and unmarshaling models at different levels: the arrow represents
marshaling/unmarshaling process

m e t a - m o d e l

m o d e l

 Here we use the ER model (Chen, 1976) as the intermediate common semantic form for

marshaling and unmarshaling modelsv. The rationales are as follows:

- Sufficiency. Even though UML is widely adopted in software modeling, which seems to justify

the use of UML as a common model for exchanging model assets across modeling facilities,

UML is not convenient for model serialization, thus not fit for modeling asset exchange, reuse

and evolution. In fact, the object diagram (Booch et al., 1999), for which UML is used to capture

and store the snapshot of software system state, is represented virtually in an Entity (object) and

Relationship (links) model. Moreover, the UML modeling language has its roots in the ER model,

and the latter is already widely used as the foundation for CASE tools in software engineering

and repository systems in databasesvi.

- Necessity. As is illustrated in Figure 3, not only models, but also meta-models are in need of

marshaling and unmarshaling. Therefore, the intermediate model should be expressive enough to

be at the meta-meta model level in the meta-level stack (Frankel, 2003). The meta-meta-model is

described by the Meta Object Facility (MOF)vii, which is a set of constructs used to define meta-

models. The MOF constructs are the MOF class, the MOF attributes and the MOF association.

These constructs correspond to an ER representation (by using an Entity to represent a MOF

class), which indicates that the ER representation is semantically equivalent to MOF

fundamentally. Therefore, the ER representation is the right vehicle to play the dual roles of

marshaling both models and meta-models. Also, other non-UML based languages, even though

not as popular, are abundantly present, for which UML is not an omnipotent cure.

 The scope of this paper is on vertical direction which is further illustrated in Figure 4, i.e.,

marshaling models to ER model, then unmarshaling ER model to the GME meta-model. The gray

area in Figure 4 represents the MIC paradigm. To be specific, in the following section, we will

marshal a UML class diagram for Web Services Description Language (WSDL) to the GME

meta-model, then create a WS modeling environment based on the meta-model for WS code

generation. Therefore, legacy software systems can be reengineered to the WS application

automatically with a language neutral approach. We also show the generality of this approach:

even though the scope is within the vertical direction, the approach can also be applied for

horizontal marshaling/unmarshaling using ER model; even though the source model is the UML

object-oriented model, it is not tied to this single kind of source model and can be applied to other

domain-specific visual modeling languages as well.

 Figure 4. Eliciting Meta-models from model via marshaling and unmarshaling models using ER model

 M odel

E R M odel

dom ain specific m odelM 1:

M 2:
1 . m arsha l G M E M eta- M odel

M 3:

2. unm arsha l

Legacy
so ftw are W S A pp lica tion

reeng ineer

M IC

3

REENGINEERING LEGACY SOFTWARE TO WEB SERVICES (WS)

 In order to reengineer legacy software to WS, we need to capture 1) the WS technology

domain knowledge; 2) the original legacy software business domain knowledge; and 3) original

implementation technology information. This categorization of technology domain knowledge

and business domain knowledge has been described by Zhao, et al. (2003).

 Figure 5 is the class diagram of WSDL. The WS messages, which are either input or

output messages, are composed of parts, each of which corresponds to a specific data type. The

portType is an abstract WS interface definition, where each contained element, i.e., the operation,

defines an abstract method signature. The operation uses messages as its parameters. Binding

represents an instantiation to the abstract portType with concrete protocol and data type. Service

is a collection of ports, denoting a deployment of a binding at a specific network location.

b in d in g

p o r tT y p e o p e ra t io n

1 . . * 1

in p u t o u tp u t

p a r t

t y p e

1

1 . . *

s e r v ic e

p o r t

m e s s a g e

1

1 . . *

Figure 5. The architecture of WS description elements

 Figure 6 describes the legacy banking application information, including its business

domain knowledge (the first two paragraphs) and its original technology domain knowledge (the

last paragraph). Note as WS is used as wrapper for original technology domain knowledge

together with the business domain knowledge, rather than replacing the original technology, we

treat the original domain knowledge as the part of business domain knowledge in the remaining

part of the paper for simplicity purpose.

 Figure 6. A banking example

 A bank provides the service for users to set up accounts.
Account information includes personal data including Name, SSN,
phone number, address, and account data including Account Number,
PIN, Transaction Record, Balance. There are two types of
accounts: checking account and savings account.
 For the bank side, it provides such services as: Account
Verification, Account Query, Deposit, Withdraw, and Transfer.
 The banking service implementation may use such technology as
RMIviii, J2EEix, and CORBAx. Also it will enforce some Quality of
Service (QoS) requirements such as Availability, Dependability,
Capacity.

Marshaling Legacy Software Model to ER Model

 In order to elicit the banking domain WS meta-model, we need to first merge the WS

technology domain information with the business domain information. To that end, we treat the

WS technology domain as the dominant domain during the merge process, with the business

domain knowledge as the adjunct domain being appended to the marshaled model from the

technology domain model. As such, the marshaling process as illustrated in Figure 4 can be

decomposed into the marshaling type A for dominant domain and type B for adjunct domain

together with a merge step as is illustrated in Figure 7.

 Figure 7. Stepwise marshaling
B u s in e s s D o m a in
K n o w le d g e

T e c h n o lo g y M o d e l

P a r t ia l E R
M o d e l

C o m p le te E R
M o d e l

M e r g e

M a r s h a l A

M a r s h a l B

Table 2. Marshaling rules

Type Rule

Marshal A

 aggregation, association, generalization,

and dependency => Relationship

 class=> Entity

Marshal B domain analysis and mapping

 Table 2 illustrates the marshaling rules based on different marshaling types. Note that one of

the essential characteristics of a meta-model is that it treats not only the models, but also the inter-

relationships among models as first-class entities. Therefore, for marshal type A, the different

type of relationships between classes will be mapped to the Relationship construct in the ER

model, while each class is represented as an Entity. Figure 8 illustrates the resultant ER model

after marshaling the WS class diagram based on this rule. Each diamond represents a type of

relationship in the original class diagram. Note we ignore type in the ER model of Figure 5,

l
 Figure 8. Marshaling WSDL model to ER mode

because we can put the type directly as the attribute of the part element. However we will not

include the attributes to the entities and relationships in the ER representation here, as the focus

of this paper is about the model of marshaling and unmarshaling structurally; the attributes will

be annotated in the GME meta-model and are shown later.

 For marshal type B, a domain analysis phase (Czarnecki & Eisenecker, 2000) is needed to

associate the business domain information to the technology domain information. Specifically,

the different banking services described in Figure 6 can be treated as different types of

operations in WSDL, while different banking service implementation technology and QoS

requirements can be associated to bindings in WSDL as a reification of operations. Account

information and account type information can be treated as messages in WSDL. Figure 9

illustrates in detail the resultant ER model after annotating the business domain knowledge (using

either generation relationship or association relationship) to the WSDL ER model illustrated in

Figure 8. By using the ER model as the intermediate form for marshaling, different types of

Figure 9. The ER model of Banking Service WSDL: the three parts enclosed with dashed line represent the
extended part to the WSDL model.

domain knowledge can be merged incrementally without obfuscating each other, which provides

a separation of concerns toward domain-specific model refinement. Also with the non-invasive

merge process, the business domain semantics are reified with technology semantics while the

business domain semantics are kept unchanged.

 Just as the compiler can apply code optimization when compiling application code, the

marshaling process can be used to apply optimization (e.g., reduce redundant models or

relationships) for the original modeling language (either UML or domain specific), the detailed

discussion of which is out of the scope of this paper.

Unmarshaling ER Model to GME Meta-model

 In the GME meta-model, the containment relationship is represented by using a model

element (stereotyped with <<model>>), which, in contrast to an atom element (stereotyped with

<<atom>>), can contain other modeling elements. Also the contained elements can be promoted

as ports of the model to have direct connections with external modeling elements.

Additionally, GME uses a root model as an entry point of access to all the modeling elements.

Also, the relationship of ER is represented in GME as a first-class modeling element, connection

(stereotyped with <<connection>>), with a connector in the form of a dot to associate this

relationship with two modeling elements (entities).

 The unmarshaling from the ER model to the GME meta-model is based on the relationships in

the ER representation, as is illustrated in Table 3.

1) A contains B. In this case, A can be modeled as a model element in GME containing B.

2) B is specialized from A. In this case, A is rendered by an abstract FCO (First Class Object,

tagged with <<FCO>>, represents an abstract generalization of other modeling constructs), a

modeling element to be used as an abstract interface in GME, and B is represented as an inherited

class of that FCO. Note there are two special treatments here: first, for the input/output elements

 Table 3. The Unmarshaling Rules: the relation notation is consistent with that in Figure 8

Rule Number Relationship type GME Metamodel element

1

2

3

of Figure 9, they are only used to tag the connection (named either “input” or “output”) between

message entities and its interconnecting entities in GME; second, the generalization relationship

between binding and portType is actually treated as an association when modeling in GME,

because the binding entity actually attaches values of the chosen protocol to the portType in

WSDL rather than in the real sense of inheritance.

3) B is associated to A. In this case, a connection can be added to be associated with the A and B

representations in GME. The connection element can be named with respect to A’s or B’s

properties as a kind of tag, e.g., the tag can be named as the combination of both A’s name and

B’s name. Note when the situation as described in case 2 applies, then this tag should be named

as in case 2.

E
Figure 10. The meta-model of banking domain WSDL in GM

 Figure 10 shows the meta-model created by unmarshaling the ER model in Figure 9 strictly

observing the above unmarshaling rules. The seven boxes with bold borders correspond to the

seven WSDL entities in Figure 8 and 9, with WebService corresponds to the service entity. The

boxes in Figure 10 also contain attributes for the related models to be instantiated in the modeling

phase. The four areas designated by four bold dashed circular lines correspond (from right to left)

to the extension parts 1-4 in Figure 10. It can be seen from Figure 10 that the meta-modeling

language lacks the modularity that programming languages have, thus the construction process of

a complex meta-model is error-prone without a systematic, automatable treatment.

THE WS MODELING ENVIRONMENT

 After a meta-model is derived by marshaling and unmarshaling models, a domain specific

modeling environment (which is also a crucial part of MIC) can be created based upon the meta-

model, as is indicated in Table 1. Figure 11 shows the screenshot of the banking-domain WS

modeling environment based on the meta-model illustrated in Figure 10. The lower-left corner

provides the modeling elements that can be dragged and dropped in the upper-left pane for

Figure 11. The banking domain-specific WS modeling environment

constructing a banking service model. The names of the models in the lower-left pane represent

the meta-model names (kind names); when those models are dragged to the above pane, the

model name can be changed to reflect the meaning of the model in the domain-specific context,

which we call a context name. Furthermore, the domain-specific model can be traversed based on

the meta-model and interpreted in terms of code generation using the GME Builder Object

Network (BON) framework (ISIS, 2001), which is illustrated in Figure 12. For saving space,

Figure 12 only shows the interpreter code for generating message and portType of WSDL. Other

part of WSDL can be generated in a similar way. The WSDL code generated for the banking

service embedded with QoS parameter extension is shown in Figure 13. Because of the limited

space, only a snippet of the generated WSDL code is shown in Figure 13. Notice the bold-font

part of the following WSDL code includes the QoS and ontology attributes of WSDL, which may

be used for WS filtering if QoS requirements or domain specific requirements are include for

service discovery.

Figure 12. WSDL code synthesis using GME BON API

const CBuilderModelList *root = builder.GetRootFolder()->GetRootModels();
POSITION pos = root->GetHeadPosition();
ASSERT(pos->GetCount()==1); //to ensure this model is representing just one WSDL

CBuilderModel *webserv = pos->GetHead(); //get the handle to the WebService model
ASSERT(webserv->GetKindName()=="WebService");

//WSDL message part
const CBuilderAtomList *messages = webserv->GetModels("message");
pos=messages->GetHeadPosition();
CBuilderAtom *oneMessage;
while(pos)
 {
 /*
 traverse each message model and generating code
 <message>... </message>
 for each message model
 */

 oneMessage=messages->GetNext(pos);
 const CBuilderAtomList *accounts =oneMessage->GetAtoms("PersonalAccount");
 ...
 }

//WSDL portType part
const CBuilderAtomList *portType = webserv->GetModels("portType");
pos=portType->GetHeadPosition();
ASSERT(pos->GetCount()==1); //to ensure only one portType element in WSDL
CBuilderAtom *oneportType;
oneportType=portType->GetNext(pos);
…..
}

 Figure 13. The WSDL for a banking WS

<message name="checking">
 <part name="user_ident" type="identity"/>
 <part name="p1" type="checking"/>
</message>
<message name="savings">
 <part name="user_ident" type="identity"/>
 <part name="p1" type="savings"/>
</message>
<message name="checking_savings">
 <part name="user_ident" type="identity"/>
 <part name="p1" type="checking"/>
 <part name="p2" type="savings"/>
</message>

<portType name="BankingServices">
 <operation name="w"

ontology="Banking:withdraw">
<input message="checking"/>

 <output message=""/>
 </operation>
 <operation name="d"

ontology="Banking:deposit">
 <input message="checking"/>
 <output message=""/>
 </operation>
 <operation name="v"

ontology="Banking:deposit">
 <input message="checking_savings"/>
 <output message=""/>
 </operation>
 <operation name="q" ontology="Banking:query">
 <input message="savings"/>
 <output message=""/>
 </operation>
</portType>

(to be continued in the right pane)

<binding name="J2EE_Banking"
type="BankingServices">

 <soap:binding style="J2EE" transport="http"
QoS:portability="0.544400">

</binding>
<binding name="CORBA_Banking"

type="BankingServices">
 <soap:binding style="CORBA" transport="IIOP"

QoS:turn-around-time="10.35">

</binding>
<binding name="RMI_Banking"

type="BankingServices">
 <soap:binding style="RMI" transport="http"

QoS:dependability="0.34">

</binding>

<service name="My Bank">
 <port name="p1" binding="J2EE_Banking">

<soap:address location="URL1"/>
 </port>
 <port name="p2" binding="CORBA_Banking">

<soap:address location="URL2"/>
 </port>
 <port name="p3" binding="RMI_Banking">

<soap:address location="URL3"/>
 </port>
</service>

MODEL-DRIVEN APPROACH TO ENRICH WS SEMANTICS

 Current WS standards mainly embrace the semantics of processes at the collaborating

syntactic interface level. WSDL only exposes distributed object services, while such process

behavior aspects as ordering, and dependency are not well specified in the existing WSDL

standard. The model-driven approach can play a unique role in enriching the WS semantics:

 OCL (Object Constraint Language)xi to enrich WS semantics at a high level

OCL is used to complement the semantic representation for UML. Likewise, when the

model is used to represent WS, OCL can be used to enrich WS semantics indirectly at a

higher level. For example, if we add into the banking case in Figure 6 such requirement

that “deposit and withdraw can only be applied to checking account”, the specified

constraints over withdraw and deposit operations can be enforced in GME using the

following MCL expression (ISIS, 2001), an OCL implementation in GME:

 connectedFCOs("src")->forAll(c|c. kindName()="checking")

Those constraints apply to both the withdraw atom and the deposit atom in Figure 10,

which means those First Class Objects (referring to both entities and relations in GME)

that are connected with withdraw/deposit atoms are all of kind "checking".

Therefore, in the WS modeling environment as shown in Figure 11, once a modeling

entity of type other than “checking” is connected to withdraw/deposit, an error message

window will pop up.

 Meta-model as Ontology

A valid meta-model is an ontology, but not all ontologies are modeled explicitly as meta-

models (Ernst, 2002). This ideal has already been used in (Hausmann et al., 2004) for

WS discovery. Comparatively, here we just output the meta-model information into the

generated WSDL as ontology annotation to enrich the WSDL semantic representation.

 Creating modeling language for enriching WS semantics

Assume there is order restriction for those banking operations described in Figure 6: both

transfer and withdraw have to be preceded by a query operation; the account verification

comes after each of the other operations. Such models as Finite State Machine (FSM) can

be used to enrich WS semantics. Based on the FSM meta-model in Figure 2, a FSM

modeling environment can be created in addition to the WS modeling environment that is

described in Section 4, which can be used to generate operation ordering constraint code

to be embedded in WSDL. We skip the details here due to space limitations.

RELATED WORK

 This paper presents both a novel model-driven approach in general and its novel application

to WS in particular. Specifically:

1) For the model-driven approach aspect, we use ER model for marshaling and unmarshaling

models. The related work in this regard includes:

 MDA

MDAxii is an initiative from OMGxiii for capturing the essence of a software system in a

manner that is independent of the underlying implementation platform. MDA can assist

in reengineering legacy software systems into Platform Independent Models (PIMs). A

PIM can be mapped to software components on Platform Specific Models (PSMs), such

as CORBA, J2EE or .NET. In this way, legacy systems can be reintegrated into new

platforms efficiently and cost-effectively (Frankel, 2003). However, the core part of

mapping technology for MDA is either ad-hoc or pre-mature before MDA can be fully

adopted in industry. ER-based model marshaling and unmarshaling offers a potential

solution to address this problem systematically. Another difference is that in MDA, the

PIM is treated as dominant model while here we treat the technology domain as dominant

model, with business domain knowledge (PIM) as adjunct model in Section 3.

 It has been observed that the ER representation has been adopted in defining the

Knowledge Discovery Meta-Model (KDM)xiv and Ontology Definition Meta-Model

(ODM)xv in OMG, which underscores the role that ER plays for model marshaling and

unmarshaling.

 Grammar Inference

The ER model, because of its powerful modeling capacity, can be used as an intermediate

form for model-to-model and meta-model-to-meta-model exchange. Because of the dual

role that the ER model can play, it is treated as an intermediate form for model-to-meta-

model elicitation, which is the theme of this paper. This idea is very similar to grammar

inference (Higuera, 2001), where a grammar can be inferred from language examples.

But the two approaches are applied at different abstraction levels.

 XMI

XMIxvi provides a standard mapping from MOF-based models to XML, which can be

exchanged between software applications and tools, and the XMI specification is difficult

to read by humans. In contrast, ER-based model marshaling and unmarshaling represents

a design-level approach for evolving design assets, without being restricted to low-level

syntactical data representation specifics, and the ER representation is much more human

comprehensible. Also, the XMI-based approach uses top-down mapping, and is coupled

to the meta-model of the targeted language; interchange format cannot be changed

without changing the meta-model. In contrast, the ER-based approach represents either

horizontal mapping or bottom-up mapping as is illustrated in Figure 3, without being tied

to any meta-model.

2) We applied the model-driven approach to WS, specifically, MIC for WS code generation

automatically; Model-driven approaches for enriching WS semantics are also identified. The

related work in this regard is as follows:

 In Lopes and Hammoudi (2003), MDA is used together with workflow technology for

modeling and composing WS. But the authors do not provide a guideline as to how to create the

meta-models. Also the mapping from PIM to PSM is not detailed. In contrast, our meta-modeling

approach is sufficiently complete and general as to be applicable to other aspects of WS such as WS

orchestration code generation. Sivashanmugam (2003) describes an approach of adding semantics

to WS by adding ontology attributes to both WSDL and UDDI, which includes pre-condition and

effect specification. We applied ontology annotation to WS as well, and we put the pre-condition

and other effect specification at the meta-model level. In Mantell (2003), an MDA approach is

used for BPEL4WSxvii code generation from a UML design. This approach uses XMI processing

technology for UML model exchange. Comparatively, the XML representation for the ER model is

much simpler and easier to process in our approach. Code generation in Mantell (2003) is based on

the UML profile mapping, which is not as flexible as a generator-based approach in our case.

 The UniFrame project (Raje et al., 2002; Olson et al., 2004), has a more comprehensive

application of the model-driven approach. UniFrame aims at creating a framework for seamless

integration of distributed heterogeneous components. In UniFrame, the model-driven approach is

applied for domain engineering, and for creation of Generative Domain Models (GDMs)

(Czarnecki and Eisenecker, 2000), which are used for eliciting rules to generate glue/wrapper code

for assembling distributed heterogeneous components. In contrast, the scope of glue/wrapper code

generated here is specific to WS code, which has not been addressed by UniFrame.

CONCLUSION AND FUTURE WORK

 With Web Services (WS) as a wrapper, legacy software systems can be reused and

integrated beyond enterprise boundaries across heterogeneous platforms. This paper explores in

detail a model-driven approach to reengineer legacy software system to WS applications using a

systematic, automatable process, which includes: 1) the meta-modeling process using ER-based

marshaling and unmarshaling, 2) the construction of a WS modeling environment for generating

WS code and enriching WS semantics. To our best knowledge, there is no peer work that

addresses either systematic meta-model construction, or sufficient model-based WS code

generation, while our work represents a comprehensive solution to both issues. Even though the

work presented in this paper is specific to WS development, the approach can be applied to other

web system engineering by reengineering to a different meta-model other than the WS meta-

model.

 Future work will be to provide tool support for part 1 in the preceding paragraph to

automate the model marshaling and unmarshaling process for seamlessly integrating the

reengineering process to MIC paradigm. For part 2, we will enrich the WS modeling environment

by providing modeling and code generation support to other behavior concerns of WS such as

interaction, activity, and temporal relationship, as well as WS orchestration and adaptation.

ACKNOWLEDGEMENTS

This research is supported in part by the U. S. Office of Naval Research under the award number

N00014-01-1-0746.

REFERENCES

Booch, G., Rumbaugh, J. & Jacobson, I.(1999). The Unified Modeling Language User Guide.
Addison-Wesley.

Cao, F., Bryant, B. R., Burt, C., Gray, J., Raje, R., Olson, A., & Auguston, M. (2003). Modeling

Web Services: toward system integration in UniFrame. Proceedings of 7th World Conference
on Integrated Design and Process Technology (IDPT'03).

Cao, F., Bryant , B. R., Zhao, W., Burt, C., Gray, J., Raje, R., Olson, A., & Auguston, M. (2004).

A Meta-modeling approach to Web Services. Proceedings of 2004 IEEE International
Conference on Web Services (ICWS 2004).

Cao, F., Bryant , B. R., Zhao, W., Burt, C., Gray, J., Raje, R., Olson, A., & Auguston, M. (2005).

Marshaling and unmarshaling models using Entity-Relationship model. Proceedings of the 20th
Annual ACM Symposium on Applied Computing (SAC 2005).

Chen, P. P. (1976). The Entity-Relationship model: toward a unified view of data. ACM
Transactions on Database Systems, 1(1), 9-36.

Colan, M. (2004) Service-oriented architecture expands the vision of Web Services. http://www-

106.ibm.com/developerworks/webservices/library/ws-soaintro.html.
Czarnecki, K., & Eisenecker, U.W. (2000). Generative Programming: Methods, Tools, and

Applications. Addison Wesley.

Devanbu, P., Karstu, S., Melo, W., & Thomas, W. (1996). Analytical and empirical evaluation of

software reuse metrics. Proceedings of 18th International Conference on Software Engineering
(ICSE’96).

Edwards, G. T., Deng, G., Schmidt, D. C., Gokhale, A. S., & Natarajan, B. (2004). Model-driven

configuration and deployment of component middleware publish/subscribe services.
Proceedings of 3rd international Conference on Generative Programming and Component
Engineering (GPCE 2004).

Ernst, J. (2002). What are the differences between a vocabulary, a taxonomy, a thesaurus, an

ontology, and a meta-model?
 http://www.metamodel.com/article.php?story=20030115211223271.

Frankel , D. S. (2003). Model Driven Architecture: Applying MDA to Enterprise Computing.

Wiley.

Garlan, D., Monroe,R. T., & Wile, D. (2000). Acme: architectural description of component-
based Systems. Foundations of Component-Based Systems, ed. Leavens, G. T. and Sitaraman,
M., Cambridge University Press, 47-68.

Gokhale, A., Schmidt, D. C., Natarajan, B., Gray, J., & Wang, N. (2004) Model driven

middleware. Middleware for Communications, ed. Mahmoud, Q., John Wiley and Sons, 163-
187.

Graham, S., Simeonov, S., Boubez, T., Davis, D., Daniels, G., Nakamura, Y. & Neyama, R.

(2002). Building Web Services with Java. SAMS.

Hausmann, J. H., Heckel, R., & Lohmann, M. (2004). Model-based discovery of Web Services.

Proceedings of International Conference on Web Services (ICWS 2004).

Higuera, C. d. l. (2000). Current trends in grammatical inference. Proceedings of Joint IAPR Int.

Workshops SSPR & SPR 2000.

ISIS.(2001). GME 2000 User’s Manual, Version 2.0. Vanderbilt University.

Karsai, G., Sztipanovits, J., Ledeczi, A., Bapty, T. (2003). Model-integrated development of

embedded software. IEEE. 91(1), 145-164.

Lédeczi, Á., Bakay, A., Maroti, M., Volgyesi, P., Nordstrom, G., Sprinkle, J., & Karsai, G. (2001).

Composing domain-specific design environments. IEEE Computer, 34(11), 44-51.

Lédeczi, Á., Davis, J., Neema, S., Agrawal, A. (2003). Modeling methodology for Integrated
simulation of embedded systems, ACM Transactions on Modeling and Computer Simulation.
13(1), 82-103.

Lopes, D., & Hammoudi, S. (2003). Web service in the context of MDA. Proceedings of.

International Conference on Web Services (ICWS'03).

Mantell, K. (2003). From UML to BPEL: model driven architecture in a Web Services world.

http://www-106.ibm.com/developerworks/webservices/library/ws-uml2bpel/.

Olson, A. M., Raje, R. R., Bryant, B. R., Burt, C. C., & Auguston, M. (2004). UniFrame-a unified

framework for developing service-oriented, component-based, distributed software systems.
Service-Oriented Software System Engineering: Challenges and Practices, ed. Stojanovic, Z. and
Dahanayake, A., Idea Group, 68-87.

Raje, R. R., Auguston, M, Bryant, B. R., Olson, A. M., Burt, & C. C. (2002). A quality of service-

based framework for creating distributed heterogeneous software components. Concurrency and
Computation: Practice and Experience, 14(12), 1009-1034.

Sivashanmugam, K., Verma, K., Sheth, A., & Miller, J. (2003). Adding Semantics to Web Services

Standards. Proceedings of International Conference on Web Services (ICWS'03).

Zhao, W., Bryant, B. R., Burt , C. C., Gray, J. G., Raje, R. R., Olson, A. M., & Auguston,

M.(2003). A generative and model driven framework for automated software product
generation. Proceedings of CBSE 6, the 6th Workshop on Component-Based Software
Engineering: Automated Reasoning and Prediction.

i http://ws.apache.org/axis/
ii UMLTM - Unified Modeling Language - http://www.omg.org/uml
iii JVLC - Journal of Visual Languages and Computing-http://www.elsevier. com/locate/jvlc
iv Interview with Keith Short, http://www.theserverside.net/talks/ library.tss#KeithShort
v Note that the ER model is not intended to replace the existing modeling language such as UML or Petri

Nets – those modeling languages have their own advanced features for a specific domain to model. Here
the ER model is chosen as an intermediate form only for exchanging models of a close type or serving a
close purpose but with variant notations across different modeling tools and environments.

vi http://bit.csc.lsu.edu/~chen/chen.html
vii Meta-Object Facility - http://www.omg.org/technology/documents/formal/mof.htm
viii RMI - Remote Method Invocation: http://java.sun.com/products/jdk/rmi/index.jsp
ix J2EE - Java 2 Enterprise Edition: http://java.sun.com/j2ee/
x CORBA® - Common Object Request Broker Architecture: http://www.omg.org/corba/
xi http://www-3.ibm.com/software/ad/library/standards/ocl.html
xii MDA - Model-Driven Architecture - http://www.omg.org/mda
xiii OMG - Object Management Group -http://www.omg.org/
xiv http://www.omg.org/cgi-bin/doc?lt/2003-11-4
xv http://codip.grci.com/odm/draft/submission_text/ODMPrelimSubAug04R1.pdf
xvi XMI - XML Metadata Interchange - http://www.omg.org/technology/ documents/formal/xmi.htm
xvii BPEL4WS - Business Process Execution Language for Web Services - http://www-128.ibm.com/

developerworks/library/specification/ws-bpel

	ABSTRACT
	Unmarshaling ER Model to GME Meta-model
	This paper presents both a novel model-driven approach in general and its novel application to WS in particular. Specifically:
	1) For the model-driven approach aspect, we use ER model for marshaling and unmarshaling models. The related work in this regard includes:
	MDA
	XMI
	
	
	
	Cao, F., Bryant, B. R., Burt, C., Gray, J., Raje, R., Olson, A., & Auguston, M. (2003). Modeling Web Services: toward system integration in UniFrame. Proceedings of 7th World Conference on Integrated Design and Process Technology (IDPT'03).

